skip to main content


Search for: All records

Creators/Authors contains: "Ku, Jia-Chi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Meiotic recombination is a fundamental process that generates genetic diversity and ensures the accurate segregation of homologous chromosomes. While a great deal is known about genetic factors that regulate recombination, relatively little is known about epigenetic factors, such as DNA methylation. In maize, we examined the effects on meiotic recombination of a mutation in a component of the RNA-directed DNA methylation pathway,Mop1(Mediator of paramutation1), as well as a mutation in a component of thetrans-acting small interference RNA biogenesis pathway,Lbl1(Leafbladeless1). MOP1 is of particular interest with respect to recombination because it is responsible for methylation of transposable elements that are immediately adjacent to transcriptionally active genes. In themop1mutant, we found that meiotic recombination is uniformly decreased in pericentromeric regions but is generally increased in gene rich chromosomal arms. This observation was further confirmed by cytogenetic analysis showing that although overall crossover numbers are unchanged, they occur more frequently in chromosomal arms inmop1mutants. Using whole genome bisulfite sequencing, our data show that crossover redistribution is driven by loss of CHH (where H = A, T, or C) methylation within regions near genes. In contrast to what we observed inmop1mutants, no significant changes were observed in the frequency of meiotic recombination inlbl1mutants. Our data demonstrate that CHH methylation has a significant impact on the overall recombination landscape in maize despite its low frequency relative to CG and CHG methylation.

     
    more » « less